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Fig. 1: We present an approach to automatically color the textures of objects in a virtual scene for invoking a desired type of mood.
In this example, our approach colorizes a virtual bedroom according to the “cheerful” mood.

Abstract—
One of the challenging tasks in virtual scene design for Virtual Reality (VR) is causing it to invoke a particular mood in viewers. The
subjective nature of moods brings uncertainty to the purpose. We propose a novel approach to automatic adjustment of the colors of
textures for objects in a virtual indoor scene, enabling it to match a target mood. A dataset of 25,000 images, including building/home
interiors, was used to train a classifier with the features extracted via deep learning. It contributes to an optimization process that
colorizes virtual scenes automatically according to the target mood. Our approach was tested on four different indoor scenes, and we
conducted a user study demonstrating its efficacy through statistical analysis with the focus on the impact of the scenes experienced
with a VR headset.

1 INTRODUCTION

Virtual reality (VR) enables a highly immersive experience for digital
storytelling, movies, and gaming applications. Among all the factors in
virtual scene design, the user’s mood caused by such an experience has
always been regarded as a crucial one. For example, a fantasy game
designer would like to decorate the scene with vibrant colors to invoke
a mood of cheerfulness and excitement.

Virtual scene colorization is a tedious process involving many man-
ual operations. It consumes time due to massive trial-and-errors for the
mood desired by the designer. The previous successful practices in the
tasks relevant to virtual scene design [2, 15, 20, 29, 43, 47] motivated us
to exploit optimization techniques against the problem.

In this paper, we propose an approach to automatic adjustment of the
colors of textures for objects in a virtual indoor scene so as to match
a target mood, facilitating the tasks of virtual scene design (Figure 1).
Based on a data-driven optimization process, it edits the input scene
through iterations. As the problem requires support in mood recog-
nition, we employ deep learning through a fine-tuned Convolutional
Neural Network (CNN) for feature extraction from images for moods.
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Approaches have focused on color schemes [6, 8, 12], but we provide
an approach that works automatically with features from a CNN. The
extracted features construct a classifier for mood evaluation of the vir-
tual indoor scene. With our approach, we plan to provide a method to
generate colors for a scene that evoke a certain mood without having
to depend on pre-conceived color patterns. The contributions of this
paper include:

• proposing a novel approach to automatic adjustment of the colors
of textures for objects in a virtual indoor scene, enabling the scene
to match a target mood;

• a mood classifier trained on a dataset consisting of 25,000 images
for five different moods.

• conducting a user study based on statistical analysis for validating
the approach’s efficacy (i.e., if the target mood can be identified by
users and enhanced in the scenes experienced with a VR headset).

2 RELATED WORK

Our work on mood-driven colorization of virtual indoor scenes relates
to the areas of colors and moods, virtual indoor scene design and image
classification with CNNs. We provide a brief literature review.

2.1 Colors and Moods
Studies on colors and moods date back to the 19th century (i.e., a survey
of past empirical and theoretical work about color and psychological
functioning by Elliot [13]). Recently, Pelowski et al. [35] highlighted
that colors and moods were significantly interrelated in the study of
human’s psychological responses to art pieces.
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Through a series of user studies, Kurt and Osueke [25] presented
that combinations of colors for architectural interiors affected human’s
mood and perception. Furthermore, Elliot and Maier [14] validated
that colors impacted a variety of psychological aspects, not limited to
human’s performance in tasks. Wardono et al. [44] proposed that the
color scheme of an interior design influenced the behaviors and moods
of diners.

Karayev et al. [22] classified images based on styles using an exten-
sive and annotated database; They constructed classifiers with a variety
of features, including those from Deep Neural Networks (DNNs) and
from graph-based visual saliency. This work involved several styles
(e.g., romantic, noir, pastel) and the classifiers for predicting the image’s
style achieved an accuracy of 78%. In comparison, our approach can
generate results that match a certain mood, going beyond identification.

Colors and the moods that they may convey have been shown to have
universal associations. For example, Adams and Osgood [1] conducted
a literature review of over 89 papers finding overwhelmingly that there
is shared interpretation in the cross-cultural meaning of color. That
being said, there are specific cultural associations of colors that may
not be universal, as pointed out by Jonauskaite et al. [21]. They tested
emotional associations in a user study with 4,598 participants from
30 nations across 22 languages. They found not only strong universal
associations between mood and color, but also strong local associations
based on geographical proximity and linguistic similarity.

In our approach, we use an extensive and manually created dataset
of images on various rooms to extract features via deep learning. Zhao
et al. [49] developed a personality scoring network for judging the
aspects/features of a poster determining its personality; Their approach
achieved an average accuracy of 80% for classifying the personality
labels of images. While we also aim to extract features for describing
moods, the purpose of using such features is to optimize the perceived
moods of virtual scenes so that they can be experienced by users in VR.

Lukas Brodschelm et al. [6] produced a coloring approach for images
based on machine learning for Mood Adaptive Display Coloring. They
alter the colors of what is displayed on screen to counteract negative
emotions in a user, trying to take advantage of color psychology to
alter the user’s mood positively so that they can better focus on a
task. Cha et al. [7] conducted an experiment to see the relationship
between the colors of indoor virtual environments and mood. They
found that color can affect a user’s heart rate and task performance,
further evidencing the value of coloring algorithms. Lin et al. [27]
designed an optimization process to automatically suggest color designs
for indoor scenes.

2.2 Virtual Indoor Scene Design
Previous attempts on automatic design of indoor scenes have inspired
us significantly. For example, Yu et al. [47] proposed an approach for
optimizing the positions and orientations of furniture in a 3D room,
considering functionality and design parameters. Akazawa et al. [2]
presented a method for generating 3D scenes based on contact restraints.
Jiang et al. [20] devised a similar method for 3D scene synthesis, with
2D image rendering based on stochastic grammars. Wang et al. [43]
explored indoor scenes synthesis with deep learning. Ma et al. [29]
introduced a language-driven process for 3D scene synthesis from
databases.

Another relevant popular topic is texture assignment for consistent
and harmonious scenes. For example, Chen et al. [10] proposed an
approach based on simulated annealing that produces realistic textures
for objects in virtual rooms. Compared to its capability of producing
convincing results, our approach can generate realistic scenes using a
realness cost function in the optimization process, and change the hue,
saturation, and luminance of textures to fit a specific mood.

Automated color assignment for indoor scenes has been previously
explored by Chen et al. [9] using trained Bayesian networks, demon-
strating several practical applications. Their approach works by taking
colors from some objects and then extrapolating harmonious colors
for the rest of the scene. Our approach does not need such reference
objects. Liu et al. [28] proposed an approach of automatic wall color
re-assignment. Zhu et al. [51] introduced a data-driven approach for

indoor furniture colorization. Using a Bayesian network, they can ex-
trapolate color schemes from an indoor scene and generate harmonious
results. Our approach can generate realistic results as well as mood
specific configurations, as well as mixtures between the two. Fu et
al. [16] explored an interactive design method to colorize snapshots
of indoor scenes. Our approach distinguishes itself with the focus on
moods rather than styles. Specifically, this focus lies in the harmonious
color assignment for objects, which invokes a target mood in the viewer.
Furthermore, our approach targets the whole 3D scene.

Sangyoon and Choi [17] and Sra et al. [38] proposed methods for
automatic creation of textures for 3D scenes by detecting mood from
pieces of music. Inspired by their excellent results, our approach
allows users to select moods for modifying 3D scenes. Automatic 3D
construction of indoor scenes from real world data is also a research
area in progress as detailed in a recent survey on the state of the art
approaches by Pintore et al. [36]. Our approach could potentially be
applied to such reconstructions as well.

2.3 Semi-automatic Photo Recoloring
Another topic that relates to our approach is semi-automatic photo
recoloring. Cohen-Or et al. [12] designed an approach based on color
histograms in order to select harmonic color schemes for coloring
images. They do this by comparing hue histograms to color harmony
templates that were obtained from previous experiments. The templates
are scored based on how much of the color histogram of the image
resides in the template space, and the colors are adjusted by using colors
that reside only in the template. They used a Gaussian fall function.

Chang et al. [8] created an interactive palette tool for recoloring
images. They adapted previous approaches with a more flexible scheme
that can preserve monotonicity, using sophisticated feature preserving
strategies to ensure that the color changes in images are natural. Nhao
et al. [50] produced an approach that can automatically segment an
image and adjust the colors based on an input color palette. The altered
image preserved harmony in regards to the image colors. The authors
accomplished this by using two networks - one for recoloring the
images and another for appropriate segment selection.

2.4 Image Classification with CNNs
CNNs have shown outstanding performances in object detection bench-
mark datasets and have been effective for image classification. As
described in an overview of advancements in CNN models, Sultana et
al. [39] demonstrated their improvements over time and roles as the
state-of-the-art solution to image classification.

Such considerable success relates closely to the architecture of
CNNs. Compared to other DNN models, CNNs involve convolutional
layers to process pixel groups in images, and sub-sampling layers
to simplify the convolution results, for features extraction; A fully-
connected layer is usually in charge of the output. CNNs can detect
features invariant to certain transformations (e.g., rotation). Based on
such an architecture, researchers have developed a range of different
CNN models [39].

3 METHODS

As depicted by Fig. 2, our approach takes as input a user-given mood
and a virtual indoor scene (i.e., a 3D scene comprising a set of objects).
An optimizer refines the colors of object’s textures in the input scene
to match the mood. During the optimization process, the colors of
textures are iteratively adjusted until convergence, in accordance with
a database that includes pre-defined textures and colors of real-world
objects.

In this paper, we focus on five selected moods: cheerful, melancholy,
peaceful, romantic, and scary. Our selection was based on the intention
to test the representative moods sharing semantic similarities, among
which users somehow could still differentiate. For example, melancholy
and scary moods are generally described as “negative”, but users are
expected to distinguish results generated from such similar moods when
experiencing them in VR.

Using a total of 25,000 images, we trained a deep learning classifier
for the corresponding moods. In particular, each mood relates to 5,000
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Fig. 2: An overview of our approach. The user first selects a mood type and a virtual room as input. The optimization process then takes place -
objects in the scene are selected so their textures can be altered. Images are taken to capture the outlook of the current scene, based on which
the current mood cost is calculated using a CNN classifier. A realness cost is also computed to determine how realistic the textures are. The
optimization process proceeds iteratively. The output is the scene optimized with respect to the target mood.

images. All images were from indoor scenes, including bedrooms,
kitchens, living rooms, dining rooms, and others.

Virtual scene creation can be time-consuming and challenging. Al-
though researchers have proposed solutions to the relevant tasks and
achieved promising results, they are yet to completely overcome an ob-
vious drawback, that is, automation may weaken a designer’s freedom.
We seek an approach allowing designers to exploit automation, while
not significantly altering their creative visions. Since convincing 3D
scenes are integral to the creation of immersive VR experiences, we
have confidence in our approach regarding its efficacy in ameliorating
vagueness of the scenes that invoke a specific mood in the user.

4 IMAGE MOOD CLASSIFICATION

Since content-rich indoor scenes require a higher level of representa-
tion, hand-crafted features for mood detection would be ineffective
and difficult. In comparison, CNNs build maps at both low and high
levels to learn a hierarchy of features, which has shown excellent per-
formances in many areas. This fact is rooted in that their architectures
are more sophisticated than standard representations, as they comprise
several layers of non-linear feature extractors. Therefore, we chose
CNNs to solve the problem and believe they can suit the subjective
nature of moods.

In this paper, we use the VGG-F model pre-trained on the ImageNet
dataset to extract the features and use a CNN and SVM to classify the
indoor images. The VGG-F model establishes an intrinsic representa-
tion of data because its deep structure is derived by extracting complex
structures from a large amount of information; It has been applied
successfully in different image classification tasks. For example, Paul
et al. [33] predicted survival among patients with lung adenocarcinoma
using features from a CNN based on the VGG-F model. We believe that
the features of the VGG-F model pre-trained on ImageNet are sufficient
for our goal, given the following pieces of evidence. Firstly, ImageNet
is a rich dataset containing more than 10 million natural images. The
contents and objects of our mood classification task decoration im-
ages are similar to real scenes from daily life so that some of them
can be found in the ImageNet dataset. Hence the extracted features
can directly or indirectly contain similar features of those decoration
images. Secondly, to accommodate the model to the updated mood
classification issue, we carry out dataset-specific fine-tuning, which
improves the performance. We collect 25,000 indoor decoration images
for five moods (5,000 images for each mood), and labeled them by
mood. Then we fine-tuned the pre-trained VGG-F using those 25,000
images, where the batch size is 256, the learning rate is 0.0001, the
training steps is 2000, and the number of classes is 5. We use 2,000
images to test our fine-tuned model, and the accuracy of classification
is 90%, showing that the fine-tuned model is reliable for classifying the
mood. The dataset will be released. Note that other datasets of interiors
could also be used for the training.

The VGG-F model is a feed-forward neural network with five con-
volutional layers and three fully-connected layers. The input image is
converted to have a dimension of 224×224 pixels. The architecture of
the fine-tuned CNN model is shown in Fig. 2. The processed images
are extracted by the filtering operation of the convolutional layers and
the down sampling of the pooling layers. The features of each image
are extracted as a 4096-dimensional feature vector, which is used to
compute the classification result as the output. The last fully-connected
layer has output dimensionality equal to the number of classes, in our
case, the number of mood classes is 5. After extracting the features by
fine-tuned VGG-F, we use SVM with RBF kernel to classify the mood
and achieve 92% accuracy on the 2,000 test dataset. For further com-
parisons between the results of our CNN features and Five-Dominate
Colors features classifiers, refer to our supplementary document. For an
input image, a classification result is obtained for each mood type, and
the probability of being classified to a certain mood type specified by
the designer is regarded as the score of the input image for calculating
the mood cost.

The VGG-F model has shown usefulness in practical applications.
For example, Wozniak et al. [45] have shown that a retrained VGG-F
model can be used for indoor location classification based on images.
The ImageNet dataset [40] continues to be used extensively for the
testing of state-of-the-art classification techniques.

Furthermore, Jain et al. used the VGG model to classify emotions
from images of cartoons, achieving an accuracy of 95% and an F1 score
of 0.85. It outperformed other tested models.

5 TECHNICAL APPROACH

Our approach aims to adjust the colors of textures for objects to match
a target mood. To this end, we employ stochastic optimization in our
approach with a total cost function, including a mood cost formula
and a realness cost formula that drives textures to be colored similarly
to the surfaces of objects in the real world. Due to the complexity of
the large search space where the colors of textures are adjusted, we
use a Markov Chain Monte Carlo (MCMC) technique with simulated
annealing in the optimization process, which will be further discussed
in Sect. 5.4.

5.1 Formulation

Let Φ = {φi = (φ m
i ,φ t

i ,φ
c
i ,φ

a
i ,φ

α
i ) | i = 1, ..., p} denote a set of the

objects in the scene which comprise the material φ m
i (e.g., marble,

steel), the type φ t
i (e.g., desk, chair.), the five-dominant-colors of the

texture φ c
i , the surface area φ a

i , and the importance φ α
i of each object φi

in the input scene. While the material φ m
i , the type φ t

i , and the surface
area φ a

i are the inherent attributes of each object, the five-dominant-
colors φ c

i are extracted from the object’s texture which will be described
in Sect. 5.3.
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Fig. 3: An example of images used to score the dining room during
the optimization process. Each image follows the rule of thirds. The
placement of cameras and the number of images can be changed by the
user if needed.

The quality of a scene Φ is evaluated by the total cost function:

CTotal(Φ) = wMCM +wRCR(Φ), (1)

where CM is the mood cost of the scene, CR is the realness cost encoding
how realistic the colors are for objects in the scene, wM and wR are the
weights of the mood cost and the realness cost, respectively.

5.2 Mood Cost
Our classifier scores images of the scene based on the desired mood
specified by the designer. According to the rule of thirds of photography
[23] [24], we divide the camera’s screen into three equal parts in the
horizontal direction. In this way, there will be two critical focal areas
on the camera’s screen, in one-third and two-thirds in the horizontal
direction. Empirically, if the input image follows the rule of thirds, the
predicted result will be more accurate as the input image covers more
regions of the scene. So, first, we place the camera in a location that
can cover the main object such as a dining table or a bed. Then we
aimed a certain focus area of the camera at the room’s pillars to make
the picture perspective. Most rooms are in a rectangular shape and
have four pillars, so n = 4 is a common parameter choice. Fig. 3 shows
an example of four images used to evaluate the mood of the bedroom
scene. Most images used to train the classifier follow the rule of thirds.
In cases that they do not, it is not a major issue since we focus primarily
on the colors of the image. We define the mood cost as follows:

CM =
1
n

n

∑
i=1

ci, (2)

where n refers to the number of pictures used; ci ∈ [0,1] is the cost of
an image i of the scene. We define the cost of an image i as follows:

ci = w0m0 +
4

∑
k=1

wk(1−mk), (3)

where m0 is the cost of the desired mood, and mk encodes the cost of
the moods that are different from the desired mood. w0 and wk are the
weights of the moods accordingly. By default, we set all the moods’
weights to 0.2. Note that the value of the terms w0 through wk are
manually set.

Overall, a higher mood cost refers to the fact that the classifier is
less confident in the scene belonging to the desired mood.

5.3 Realness Cost
The realness cost evaluates how realistic the colors of the objects’ tex-
tures would be compared to their counterparts in the real world. We im-
plemented the color comparison method based on the CIEDE2000 [37]
algorithm, since it provides a distance metric that accounts for human

Fig. 4: A comparison of the normalized weights due to the sizes of
different objects in the bedroom scene: The controller’s weight is 0.003,
the wall’s weight is 0.081, and the floor’s weight is 0.091. All weights
are normalized between 0 and 1.

perceptibility of color differences. Our approach considers the colors
of all objects in the scene during each iteration, with each object’s cost
weighted by its area relative to the total area of all objects. We define
the realness cost as follows:

CR(Φ) = ∑
φ∈Φ

wφ · cφ , (4)

where wφ is the weight, and cφ is the realness cost of the object φ in
the objects set Φ of the scene. The weight wφ of object φ is defined as:

wφ =
φ a ·φ α

A
, (5)

where φ a is the surface area and φ α is the importance of the object φ .
A is the sum of all the objects’ weighed areas by the importance. By
default, we set φ α to 1. Fig. 4 shows an example of the weights of
different objects in the bedroom scene. The object’s realness cost cφ

evaluates the realisticity of object φ .
Our color comparison method differentiates each object in the scene

with relevant ones in the Open Surfaces Dataset [5] including a set of
common real-world objects. For example, if a lamp made of plastic is
detected, the method compares the five dominant colors of its texture
with those of all plastic lamps in the dataset. The Open Surfaces Dataset
was created with the aim of segmenting surfaces from real life consumer
photographs. The surfaces of the segmented objects are then catalogued
by material, texture, and context. In our case, our main interest is the
dominant color of these surfaces.

We apply the K-means clustering algorithm on the objects in the
Open Surface Dataset, and the result stores the color data in RGB space;
It helps us to find the five dominant colors for the textures for objects.
The RGB color values are firstly converted to CIEL*C*h [48] values so
that their distances are more highly related to human perception. This
conversion also applies to the textures for objects in the scene. Then, a
color distance metric is employed in CIEL*C*h space to evaluate the
realisticity of textures, based on the CIEDE2000 algorithm. We define
cφ as follows:

cφ =min{D(φ c,ψc) | φ ∈Φ,ψ ∈Ψ and φ
m =ψ

m and φ
t =ψ

t}, (6)

where Ψ = {ψj = (ψm
j ,ψ t

j ,ψ
c
j ) | j = 1, ...,q} is a set of the objects’

material pairs comprising the material ψm
j , the type ψ t

j , and the five-
dominant-colors ψc

j of the texture of each object ψj in the Open Surface
Dataset. D(.) is a metric to compute the color distance between the five-
dominant-colors of two objects in CIEL*C*h color space. For a detailed
explanation of D(.) please refer to our supplementary document.

K-means has also been applied successfully to differentiate colors.
For example, Hassan et al. [18] has successfully shown its application to
image segmentation in RGB and HSV color spaces. The CIEDE2000 al-
gorithm has also been shown to statistically improve over past iterations
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(a) Initial (b) Result (peaceful)
Fig. 5: Result from running our optimization with a realness cost weight
of 0.2 and a mood cost weight of 0.8 for the bedroom scene. The mood,
in this case, was peaceful. (a) The input scene. (b) The optimized
result.

of algorithms to detect color differentiation as explained by Melgosa et
al. [31]. Furthermore, the CIEDE2000 algorithm has shown to be appli-
cable in many domains. For example, Yeerken et al. [46] demonstrated
the effectiveness of the algorithm for evaluating masticatory function
through color-changeable chewing gum.

5.4 Optimization Process
Our approach modifies the input scene by optimizing it with respect
to the total cost function Ctotal(Φ). In particular, we implement the
optimization with a MCMC technique (i.e., simulated annealing with a
Metropolis-Hastings state searching step [11]). To effectively sample
solutions from the search space, we define a Boltzmann-like objective
function as follows:

f (Φ) = exp(−1
t

CTotal(Φ)), (7)

where t is the temperature parameter of simulated annealing. The
temperature t decreases over the iterations. At each iteration of the
optimization, our approach applies a move to modify the current scene
Φ to create a proposed scene Φ

′
. Each move randomly selects one or

more objects, whose textures will be modified by changing the hue,
saturation and lighting of the texture. During each iteration, we set
the number of selected objects N to a random integer between 1 and
10. Our optimization is more likely to accept moves that modify more
objects early in the process when the temperature t is high. Late in the
optimization process when the temperature t is low, it is more likely to
only accept moves that modify few objects.

To decide whether to accept the proposed scene Φ
′
, our approach

compares the total cost CTotal(Φ
′
) of the proposed scene Φ

′
with the

total cost CTotal(Φ) of the previous scene Φ. To avoid the result becom-
ing stuck at a local minimum, our approach accepts the proposed scene
Φ
′

with an acceptance probability based on the Metropolis criterion:

α(Φ
′
|Φ) = min(1,

f (Φ
′
)

f (Φ)
). (8)

We apply simulated annealing to efficiently explore the solution
space, which is controlled by the temperature parameter t. At the
beginning of the optimization, t is set to be high such that the optimizer
aggressively explores the solution space to locate a good starting point.
Throughout the optimization, the temperature t is lowered gradually,
until it reaches a low level which is near zero. By default, we set t = 1.0
at the beginning of the optimization and decrease it by multiplying by
0.95 each iteration. The optimization is set to terminate if the change
in the total cost is less than 3% over the previous 50 iterations.

Fig. 5 shows an example of the scene optimization process. The
total cost decreases over the optimization process. Fig. 7 shows the
cost over the optimization iterations. The supplemental video includes
an animation of the optimization process.

6 EXPERIMENTS

We tested the proposed approach on the scenes illustrated in Fig. 6.
Sample images from the training dataset are shown in Fig. 9. All images

(a) Bedroom (b) Bathroom

(c) Dining Room (d) Living Room

Fig. 6: The four scenes used for our experiments.

Fig. 7: The plot of our optimization process for the result of Fig. 5

shown comply with copyright rules. Credits to the owners given where
required. Other images are free to use. Our supplementary document
contains additional examples of training images for each mood.

6.1 Implementation
Our approach was tested using an Alienware R10 desktop with an
AMD Ryzen 7 3700X 8-cores 3.6 GHz processor, 64 GB of RAM, and
an NVIDIA GeForce GTX 3080 8GB graphics card.

Prior to each experiment, we configured an indoor virtual scene
with necessary pre-processing as the input. Specifically, information
of each object in the scene was required, including its material and
type, for computing the realness cost in the optimization. For each
visible object in the scene, we labeled both its material and type. For
example, a wooden chair would have a label wood for its material and
a label chair for its type. The surface areas of objects are calculated
and their textures with updated colors are generated automatically in
pre-processing. Many 3D scenes have label information about materials
and types of objects, though manual labeling is required for scenes that
do not have this information.

Designers can mark selected objects as unmodifiable before starting
the optimization process. For example, a designer may fix part of their
design and allow the other objects in the scene to be edited by our
approach. If required, the designer can also change the weights of
certain objects in regards to the realness cost.

It is also possible to color objects by group. For example, the chairs
around a table could have the same color. We provide this optional
constraint due to the observation that similar or the same color schemes
are commonly found for grouped objects in indoor scenes.

After the pre-processing, the scene is to be optimized by our ap-
proach, while designers can still determine the contributions of both
costs, balancing between its realness and distance from the desired
mood. In our experiments, the automatic optimization process took
on average about 15 minutes to converge, which improved the time
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(a) Cheerful Dining Room (b) Scary Bedroom (c) Melancholy Living Room (d) Peaceful Bathroom (e) Romantic Living Room

Fig. 8: Different results from running our optimization process.

(a) Cheerful (right: D Sharon Pruitt)

(b) Melancholy (left: goatling; right: A.Curell)

(c) Peaceful (left: Betta Living; right: US Army)

(d) Romantic (left: daryl mitchell, right: tec estromberg)

(e) Scary (left: US Department of Defense)

Fig. 9: Sample room images for training the classifier for each mood.

efficiency compared to manual designs. For example, it took the artists
in our user study at least an hour to manually color the rooms in each
scene. Artists colored the objects in the scenes using Unity’s coloring
options as well as other programs like Photoshop.

6.2 Results
Fig. 8 shows the results from the optimization process with a mood
weight wM of 0.8 and a realness weight wR of 0.2 (i.e., emphasizing
the mood more than realism). For comparison, Fig. 10 shows the
results using a mood weight of 0 and realness weight of 1.0 (i.e.,
considering realism only). Please refer to our supplementary document
for additional results. The illustrated scenes were also used in our user
study. For results of our optimization for only one scene, please refer
to our supplementary document.

In our experiments, a set of CNN and SVM classifiers were trained
for mood classification. A total of 25,000 images, with 5,000 indoor
decoration images for five representative moods (cheerful, scary, melan-
choly, peaceful and romantic), were used in the training. For more

(a) Realistic Dining Room (b) Realistic Living Room

Fig. 10: Examples of the realistic results from our approach for two
different scenes. These results were obtained using a realness weight
of 1.0 and a mood weight of 0.

details, please refer to the supplementary document.
The indoor decoration images in our dataset were downloaded from

websites (e.g., Flicker and Google) based on mood-related keywords.
To finalize the dataset, we conducted a series of selection, analysis and
manual labeling on these images, with the assistance of students and
professors in arts.

7 USER STUDIES

To test the effectiveness of our approach regarding different aspects,
we conducted four separate user studies. Specifically, User Study 1
was accomplished before the ongoing social-distancing efforts due to
the pandemic. User Study 2 was done through Amazon MTurk. User
Study 3 and 4 were conducted after the pandemic outbreak; a slightly
lower number of 13 participants were recruited for User Study 3 due to
challenges posed by social distancing.

7.1 Design
User Study 1: Scoring and Classifying Synthesized Results. Syn-
thesized results from our approach were tested in this user study with 40
participants, whose ages are in the range of 18-40 years (mean=26.65,
±5.79). They were compensated for participating. We asked the par-
ticipants to wear an Oculus Rift VR headset and view different scenes
optimized by our approach. They completed the following three tasks
based on 12 synthesized scenes (shown in our supplementary docu-
ment).

Task 1: Rating. Participants rated five results generated by our
approach using a five-point Likert scale. Ratings reflected how strongly
participants believed our results matched the input mood. A score
of five refers to Strongly Agree, while a score of one means Strongly
Disagree. For consistency, we used the Bedroom scene for all moods
throughout the task.

Task 2: Mood Identification. Using the other three scenes besides
the bedroom scene, we presented five results and asked participants
to select a mood from a list, which they believed to match the scene
the best. The task aimed to confirm if participants were capable of
matching the target mood in the scene optimization. The following
scene-mood combinations were provided: Dining Room (Cheerful),
Bedroom (Scary), Living Room (Melancholy), Bathroom (Peaceful),
and Living Room (Romantic). The mood list included an extra Others
option in addition to the mentioned moods,which applied to the case
that none of five moods was regarded as a match.

Task 3: Realism. Participants were also asked to score 2 scenes
based on how realistic they found the colorization, in a similar way
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Fig. 11: Bar charts showing the number of votes cast during the user study for the perceived mood of different scenes.

to Task 1. Both scenes were synthesized by the optimization process
with a realness weight of 1.0 and a mood weight of 0. In this task, the
Dining Room and Living Room scenes were used, and can be seen in
Fig. 10.

The scenes used in the above three tasks were viewed in random
order. Each participant viewed 12 scenes. This user study started with
an instruction page, briefing the participants about the entire process.
User Study 2: Comparing Synthesized Results to Artists’ Designs.
We conducted an alternative forced choice test. We recruited 35 Turkers
on Amazon to fill out a form, which compared 20 synthesized results
with 20 colored by two 3D artists. A screenshot can be found in our
supplementary document.

In particular, both artists were invited to assign colors to the objects
in the scenes used in User Study 1, generating a total of 20 scenes (i.e.,
2 for each scene-mood combination used in User Study 1). Then, we
asked the Turkers to choose one from the two compared scenes (i.e.,
one synthesized from our approach and one designed by an artist) that
better delivered a corresponding mood in each question. The two scenes
were displayed randomly regarding their sides (i.e., left or right) and
not labeled their origins (i.e., our approach or artists). We compensated
the artists and the Turkers for their participation.
User Study 3: Virtual Reality and Desktop Comparison. To test
the usefulness of our approach for VR applications, we recruited some
participants to view four scenes observing the scene results displayed
by a desktop application versus the same ones displayed by a VR
application with a headset. The participants were on average 24.77±
6.58 years old. 13 of them participated in this study despite challenges
posed by social distancing in the current pandemic.

Specifically, the participants rated how well the scenes invoked the
target moods, under the conditions of viewing the scenes with a VR
application and a desktop application. The ratings were given in a
five-point Likert scale, and the scenes were shown in a random order.

After completing this user study, the participants were invited to
answer several questions about how they perceived the experience in
the VR application compared to the desktop application.
User Study 4: Ablation Comparison. We evaluated and compared
the results of the three color modes: realness only, optimal, and mood
only. The weights were set to 1.0 (realness) and 0.0 (mood) for realness
only; 0.3 and 0.7 for optimal; and 0.0 and 1.0 for mood only. We asked
users to select the dominant moods of the result scenes synthesized
using the three color modes, as well as to assess whether the color
schemes of the result scenes were common in reality. We recruited 39
participants for this user study. They did not participate in other user
studies. They were all students and the average age was 24.02 years.

7.2 Results and Analysis
User Study 1: Scoring and Classifying Synthesized Results. The
mean score across all scenes from Task 1 and Task 3 scenes is 3.918
out of 5.000 (i.e., the participants were on average convinced that the
result scenes matched the desired mood). The outlier is the Romantic
Bedroom scene receiving a significantly lower score than others. The
most common score voted for across all seven scenes was 4. In the next
section we further analyze these results.

Fig. 12: Box plots showing the participant ratings in the user study.
The rectangles denote quartiles, the thick lines denote medians, the dots
denote means, and the thin lines denote margins of error. The left bar
chart shows the results for Task 1, where participants had to rate how
well each mood optimized for matched the virtual indoor scene. For
consistency, the bedroom scene was used for each mood. The right bar
chart shows the results for Task 3, where participants had to rate how
realistic the results were for the scenes. Dn. Rm. and L. Rm. refer to
the dining room and living room, respectively.

Scene P-value

all scenes 0.020
only mood bedroom scenes 0.007
only positive mood bedroom scenes 0.007

Table 1: P-values of ANOVA tests on quantitative tasks (Task 1 and
Task 3) of User Study 1.

Results from Task 2 are shown in Fig. 11. For four out of the five
optimized scenes used in Task 2, users selected the mood that was
optimized for in the majority.

Furthermore, Fig. 12 shows the box plots of the participant ratings
for Task 1 and Task 3. For more information on the results of User
Study 1 please refer to our supplementary document.

Analysis. For data from Task 1 and 3, we conducted an ANOVA test
for the involved scenes, and also between all broadly positive moods
(i.e., Cheerful, Peaceful, and Romantic). Table 1 shows the test’s result.
The null hypothesis is that there is no difference in the ratings of the
scenes. This is an important result, as it helps us differentiate between
results that were convincing or not. For the broadly negative moods
(i.e., Scary, Melancholy), we performed a pairwise t-test. The same
was done with the two scenes that were rated based on their realism in
Task 3.

Our supplementary document contains the results of all post-hoc
pairwise t-tests. The reason for performing the analysis was to deter-
mine any significant differences between ratings for each scene. If any
p-value is less than 0.05, the null hypothesis can be rejected, in which
case the compared scenes receive the same average rating from partic-
ipants. Most p-values for t-tests between two scenes are greater than
0.05, which means no significant difference exists. Since the average
rating is 3.918 out of 5.000, it supports that overall participants found
our synthesized results convincing.
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Scene Cheerful Melancholy Peaceful Scary
Dining Living Bathroom Bedroom
Room Room

Rating (VR) 4.31 4.23 4.15 4.00

Rating (Desktop) 2.85 2.77 2.92 2.69

P-value 0.007 0.008 0.029 0.011

Table 2: The average ratings given to the four different scenes used in
User Study 3. These ratings indicate how well the synthesized scenes
invoke the intended moods under each condition. Ratings are based on
a one to five Likert Scale. The scenes can be viewed in Fig. 8. P-values
are for t-tests conducted for comparing ratings between the same scenes
in the VR app and desktop app.

The t-tests with p-values lower than 0.05 include the following binary
sets of scenes: Romantic Bedroom vs. Realistic Dining Room, Cheerful
Bedroom vs. Peaceful Bedroom, Cheerful Bedroom vs. Romantic
Bedroom, and Scary Bedroom vs. Romantic Bedroom. Most of the
null hypothesis rejections were from comparisons with the Romantic
Bedroom scene, receiving the lowest score and highlighting the scene
as an outlier vs. the others with higher scores.

For the results from Task 2, all the p-values of the Chi-Squared test
are below 0.05, referring to the rejection of the null hypothesis. In
other words, that all categories in each scene would receive the same
amount of votes. Fig. 11 shows that the mood that was optimized for
received the most votes in each case, except for the Scary Dining room
scene. In this scene, the mood Melancholy received the most votes
(19). Scary received 11 votes in this case. This is possibly due to the
fact that Melancholy and Scary share semantic meaning to a certain
degree. In this case, scenes for Melancholy and Scary were optimized
with mostly dark colors, so it is somehow reasonable to interpret them
interchangeably.

For the Peaceful Bathroom scene, 20 votes were cast for Peaceful
while 14 for cheerful and six for romantic; The other two negative
moods received no votes. In the Melancholy Living Room scene, while
Melancholy was voted for the most (24), Peaceful still received 11
votes. Assuming that Melancholy and Peaceful are based on some
common semantic meaning, they can be generally described as relaxed
rather than scary. The walls in the scene are dark purple/blue and
can conduct low emotional arousal in viewers, according to an early
study [41].

For the Romantic Living Room scene, while the majority of partici-
pants voted for the romantic mood (30), five votes were cast for Others
and three for Scary. A possible reason is that many of the furniture
objects were in dark colors based on the romantic images in our dataset;
There were many dark scenes due to low lit scenes, which included
objects with red and pink colors. Research has shown that both black
and red relate to the mechanism of human’s perception of attractive-
ness [34]. In the future, investigation can be done to find a more reliable
way of deciding in which cases dark colors match a scary mood or a
romantic one.
User Study 2: Comparing Synthesized Results to Artists’ Designs.
The distribution of results in the alternative forced choice experiment is
as follows. The synthesized results obtained more votes than the artists’
designs in seven out of 20 cases. In four cases, the difference in the
number of votes was 1. In the other nine cases, the results from the
artists received more votes. Please refer to Fig. 13 for example results
from this study. Note that the artists colored the objects in the scene to
match each mood. Our synthesized results were obtained with a mood
weight of 0.8 and a realness weight of 0.2.

Analysis. In conducting this user study, we hoped that our synthe-
sized results were at least up to par to those hand-crafted by 3D artists.
Since our synthesized results received more votes or a difference of
only one vote from artists’ results in 11 out of 20 comparisons, we
could conclude that our approach produces similarly convincing results
in our study. For a breakdown of all scenes compared and the number
of votes in each case, please refer to our supplementary document.

(a) Synthesis: Cheerful Dining Room (b) Artist’s: Cheerful Dining Room

(c) Synthesis: Melancholy Living Room (d) Artist’s: Melancholy Living Room

Fig. 13: Examples of scenes used in the MTurk user study. The left
column shows our synthesized results. The right column shows artists’
creations. (a–b) For the Cheerful Dining Room, participants voted for
our result as superior with 19 vs. 16 votes. (c–d) For the Melancholy
Living Room, the artist’s rendition of the colors for the room received
1 more vote than our result, with 18 vs. 17 votes, respectively.

User Study 3: Virtual Reality and Desktop Comparison. Partici-
pants rated the scenes based on how well they invoked the intended
moods under the VR app condition and the desktop app condition,
using a one to five Likert scale. Table 2 shows the average ratings.
Overall, participants rated the effect of experiencing the scenes in VR
positively.

Participants rated the experience in VR overall with a rating of 4.17
and the desktop app with a rating of 2.81. We conducted a two-tailed
paired t-test comparing the ratings of each scene in VR to its desktop
app counterpart. Results for this study can be seen in Table 2. All p-
values are below 0.05, indicating a significant difference in the ratings.
This indicates a rejection of the null hypothesis that assumes there is
no significant difference in the ratings given under the two conditions.

Analysis. As each scene’s average rating is higher in the VR version
and all p-values obtained from T-tests conducted are less than 0.05, we
conclude that the higher rating given to the VR version is significant.

Overall, the participants commented that viewing the scenes in VR
invokes the intended mood more strongly, probably due to the greater
immersiveness delivered by VR compared to the desktop app. Since
VR experiences are growing in popularity both in film and video games,
our approach could practically be applied to facilitate designers in
prototyping scenes to produce certain moods.
User Study 4: Ablation Comparison. In this user study, we set out to
test two questions about our results: Q1) Which mood is most dominant
in a scene? The options include the previously mentioned five moods
as well as a No Preference option. Q2) Is the color distribution similar
to the common color distribution of a scene of that type? The answer is
either yes or no.

Table 3 shows the p-values calculated using the Chi-Squared Test
for the votes relating to the questions. We include the vote distribution
and a screenshot of the user study in the supplementary document.

For Q1, the null hypothesis was that voters would vote the same
amount for each mood. For Q2, the null hypothesis was that users
would vote the same amount for yes as for no in the binary questions,
except for the real scenes, which were scenes where a mood was not
optimized for. For these scenes, we assumed that the users would vote
overwhelmingly for yes (we assumed 38 votes for yes vs. 1 vote for no,
just to avoid divide by 0 errors).

For Q1, we found the p-value to be well below the threshold of 0.05,
so our results indicate a difference among voting rates for each mood.
For Q2, the results were more varied, meaning either in the cases of the
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Scene Q1 p-value Q2 p-value
Bathroom Real <0.01 <0.01
Bedroom Real <0.01 0.04
Dining Room Real <0.01 0.04
Living Room Real <0.01 1.00
Bathroom Peaceful <0.01 <0.01
Bedroom Scary <0.01 0.04
Dining Room Cheerful <0.01 <0.01
Living Room Melancholy <0.01 <0.01
Living Room Romantic <0.01 <0.01
Bathroom Peaceful Mood Only <0.01 <0.01
Bedroom Scary Mood Only <0.01 0.04
Dining Room Cheerful Mood Only <0.01 0.02
Living Room Melancholy Mood Only <0.01 <0.01
Living Room Romantic Mood Only <0.01 0.8

Table 3: The p-values calculated from the data gathered from our user
study 4. The p-values relate to the two questions that were asked.

real scenes that voters did overwhelmingly vote for yes or in all other
cases that voters voted somewhat evenly between the NO option and
yes option.

For the scenes which were optimized for moods and received a p-
value less than 0.01, we found that in five out of six cases voters voted
more for yes. In the other cases, the number of votes were more even.

7.3 User Comments
Participants were asked to comment on the results from our approach
after accomplishing the tasks in User Study 1. The comments were
overall positive, stating that the synthesized scenes enhanced the corre-
sponding target mood. Some of them pointed out that specific minor
objects (e.g., a small plate in the Dining Room scene) did not match the
others regarding colors, while the scene was still convincing.

Most of the negative comments focused on the scene optimized for
Romantic mood, which correlated with its lower rating scores compared
to those of others. Participants were not convinced about the dark
ceiling, and the wall in pink that looked unrealistic. Most comments
were positive towards the color schemes produced from our approach,
and that the results optimized with a realness cost of 1 looked realistic.
Participants also expressed their preference for the experience with the
VR headset due to the immersiveness.

8 SUMMARY

In this paper, we present a novel approach to automatic color adjustment
of the textures for objects in a virtual indoor scene so as to match
a mood. Since depicting what a mood looks like is subjective, we
aimed to ameliorate the problem via CNNs to extract features from a
large set of interior room images matching a certain mood. We used
simulated annealing in a Metropolis-Hasting algorithm to automatically
re-configure colors and textures in an indoor environment so as to
enable a closer match to the desired mood.

A statistical analysis of our user study is also provided to indicate
that, in general, the participants found the results convincing. They
correctly determined the target mood in four out of five scenes, and
rated the results from our approach with a score of 3.918 out of 5.000
on average in User Study 1. From User Study 2, we find that our
approach can color many scenes to carry moods like 3D artists do.
From User Study 3, we find that viewing the synthesized scenes via
virtual reality, compared to via a desktop screen, could invoke the target
mood more strongly.

8.1 Limitations
Several aspects of our approach are considered worth further investiga-
tion. One is about the effective visual partition of an indoor environment
based on the designer’s focus. For example, the designer would like
part of the room to match a mood, or they may expect the walls to have
less impact on the mood. Our approach can be extended to address this
point by associating the contribution of each object to the mood cost
via a corresponding weight that will be manually configurable.

Limitation still exists due to the subjective nature of moods. While
we aim to capture the relationships between mood and colors through
the use of deep learning, it is still interesting to find a more objective
method to measure the emotional responses of participants. While
some attempts have been made with EEG devices [26], the problem
still confuses people in areas like measuring indicators of positive
moods [19]. We expect the data collected from participants with an
EEG device to provide informative and useful results.

Another aspect lies in the placement of cameras in the scene. People
use cameras to take pictures, within a virtual scene, as images fed to the
classifier. In our work, angles were intuitively set when capturing most
of the room’s interior. Although we regard such a choice as sufficient for
the proposed approach, it would be more convenient to place cameras
in the scene systematically. For example, cameras could be placed at
positions where participants would be looking from because of their
nature. Research has been conducted about optimal camera positions
in virtual scenes for people to carry out tasks [4], and to get the best
visibility [32]. We believe that automation of camera positioning for
the most natural view of the scene will advance the research.

8.2 Applications

Multiple areas can benefit from our approach. The most straightforward
cases are VR game development and VR film production. If a game
developer or a scene designer would like a virtual scene to invoke a
specific mood, our approach could act as a tool for fast prototyping
facilitating the process. Architects may employ our approach in their
duties. For example, if their clients is seeking a certain mood involved
in a construction project, they can brainstorm and visualize candidate
solutions effortlessly with our approach before the implementation.

Our approach can also be applied to psychological studies. Certain
studies involve analyses on human responses to various indoor scenes.
For example, Mahmoud [30] investigated how architectural elements
affected both human psychology and behavior. Al-Akkam [3] revealed
the implementation of the design process for interior architecture con-
sidering psychological elements.

8.3 Future Work

Although participants expressed their overall positive opinions on our
approach and synthesized results in the user study, we are still interested
in the following future explorations that may improve the delivery of
the target mood in a scene. For example, objects differ by shapes and
thus it is meaningful to examine how the geometric aspect impacts on
the perceived mood. This work can be accomplished by the generation
of 3D objects to decorate a scene [42] and the delicate alteration of
shapes and outlooks for objects, in order to check the influence on
the scores output by classifiers. The materials and textures could also
have an impact on the perceived mood of a scene, which offers another
avenue of exploration.

The approach could also be extended to work with outdoor scenes.
One challenge is the more uneven geometry that is found in outdoor
scenes, as well as the impact of skyboxes. Depending on the size of the
environment, a challenge would be granularity. The optimization could
work with images that cover most of the outdoor environment. This
may not be enough to cover the mood of the colors in more focused
parts of the environment. A mixed approach that works at multiple
levels of granularity could solve this issue.

Another approach that could be explored is the possibility of working
with an end-to-end approach that can automatically output the appro-
priate color parameters for a scene. One way of accomplishing this
could be through collecting data on many iterations of our approach
with appropriate tags for objects. Then, based on average results of our
approaches, we could automatically generate a set of parameter keys
that could instantly color a scene based on the desired mood.
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